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ABSYRACT

A covariance analysis technique using the Cramer-Rao lower

bound for assessing filtering and prediction performance for a

class of nonlinear systems is presented. The class of systems

considered is nonlinear, deterministic, with unknown parameters.

The validity of this technique for the problems considered is

justified using local observability theory and unbiased

estimation for nonlinear systems.
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1. INTRODUCTION

A covariance analysis technique by means of the Cramer-Rao

lower bound for assessing filtering and prediction performance

for a class of nonlinear systems is presented. The class of

systems considered is nonlinear, deterministic, with unknown

parameters. The unknown parameters can be constants or are known

to follow nominal time functions (parametric or numerical). In

the latter case, the proportional constant to the true time

function is the unknown. In either cases, unknown parameters are

to be jointly estimated with the state variables.

The above system definition fits very well to the problem

of reentry trajectory estimation. The unknown parameter is the

ballistic coefficient. In the high endoatmospheric region, the

ballistic coefficient is a constant. In the lower altitude

region, the ballistic coefficient is a time (altitude and Mach

number) function. In certain applications, a nominal ballistic

coefficient profile is known to the estimator.

The assumption that the nonlinear system is deterministic

places certain restrictions on the generality of the ensueing

analysis. In using an extended Kalman filter for state

estimation in this case, a process noise variance is selected to

represent the variability of the unknown parameter. On the other

hand, if the maximum likelihood (batch) estimator is used with

the assumption that a nominal parameter profile is available,
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then the underlying system can be modeled as deterministic. For

this latter situation, we therefore feel that the assumption of a

deterministic system is valid for many applications.

The Cramer-Rao bound for nonlinear deterministic systems

has been shown to be very tight for the trajectory estimation

problem with angle-only measurements [5]. This is the basis of

the analysis technique being introduced in this report. The

problem of trajectory estimation with ballistic coefficient being

the unknown parameter provided the motivation for the analysis

method described herein.

This report is organized as follows. The problem

considered in this report is defined using system and measurement

equations in Section 2. The Cramer-Rao bound theory for

deterministic nonlinear systems is reviewed in Section 3. The

validity of the Cramer-Rao bound for the problems considered is

justified using the local observibility theory and the unbiased

estimation. Covariance equations for filtering error and

prediction errors are summarized in the fourth section.
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2. PROBLEM DEFINITION

Consider the following continuous-time system with discrete

measurement problem

x - f (x, P) (2.1)

Yk = ! + !ak; xk =x(tk) (2.2)

where x and y are state and measurement vectors, p is the unknown

parameter vector and nk is the measurement noise vector which

is a zero mean, white Gaussian sequence with covariance Rk.

Two cases for the parameter vector p are considered.

(1) p is an unknown constant vector.

(2) p follows a vector of profiles with known shape but

uncertain in absolute value. We therefore have

pi(t) = i 0tl

where p91(t) is a time function (parametric or numerical) known

to the estimator and denotes the i-th element of k°(t). The

corresponding i-th component of the true profile is denoted by

pi(t) and the proportional constant ai becomes the unknown

constant to be estimated.
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In either cases above, we augment the unknown constants

with the state vector x, the estimator is therefore to jointly

estimate x and the unknown constants. Let ! denote either the

constant vector p or the proportional constant vector _, we then

have

y .0 (2.3)

and the augmented state vector xa is

T ixT , .YT] (2.4)
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3.* THE CRAMER-RAO BOUND FOR DETERMI1NISTIC NONLINEAR SYSTEM

3.1 Review of the Cramner-Rao Bound Equations

The Cramer-Rao bound (CRB) on the covariance of estimating

x!(t k based upon measurement vectors yo,, y1fl-tyXk for all

unbiased estimators is given below.

~G. H. _ Hi G (3.1)

=( I(xk) (3.1la)

where

=the Fisher's information matrix evaluated
at xk.

P(xk) =the Cramer-Rao bound evaluated at xk.

G k =I (an identity matrix).

4 the solution of F 0 ' Ft(t, T.),

O(T, r) =I, for T- tir evaluated at t t

Ft the Jacobian matrix of f(x(t)).

H1  the Jacobian matrix of h(xi).

Rj The measurement error covariance at time ti,

L5
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The derivation of the above results may be found in [1],
[21. Notice that the P(x!k) may be re-evaluated at any time

instance and this is accomplished via the appropriate choice of

the composite transition matrix Gi.

In evaluating the performance of a certain nonlinear

estimation problem, the Cramer-Rao bound provides several

desirable features. It is easy to compute when compared against

other bounds. When the maximum likelihood estimator (MLE) can be

realized, the CRB and MLE go hand in hand. It is well-known that

the MLE is consistent, asympotically.efficient, and

asymptotically Gaussian, [3]. The existence of MLE therefore

guarantees that the CRB is at least asympotically achievable.

Clearly, the Cramer-Rao Bound (3.1a) does not exist if the

Fisher's information matrix (3.1) is singular. This implies that

there does not exist any unbiased estimator for xk with finite

"" estimation errors (variances). In the nonlinear systems theory, -'-

. I(k) also ties with the nonlinear observability condition and

*he existence of a particular maximum likelihood estimation

algorithm as we shall demonstrate next.

6 7
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3.2 Local Obervability Condition and Maximum Likelihood -

Estimation

In [41, the use of I(xk) in examining the pointwise

observability at xk was presented.* It stated that if I(xk)

is positive definite, then the system is observable at xk. In

here, we extend the above condition to a local sphere about

'X. We first present the following theorem.

Theorem 3.1

Given a positive definite symmetric matrix A with

eigenvalues An > Xn-1 1>> > 0 , if B is symmetric and

I-BII< X1, then B is positive definite.

Proof:** Using the definition

m <Ax,x>

and A-B being symmetric, we have

" A-B = max < (A-B) x, x >

Thus, for any unit vector x,

, * The observability Grammian of [41 is the same as I(x!k)
- with Ri being set to an identity matrix. ..

** Proof of the theorem is due to Dr. R. B. Holmes.

7.-. . - - - - - - - .



< (A-B)x, K > -< Ax, K> -< BK, x>

< X1

< < Ax,K>

Clearly, <BK, x> > 0, then B is positive definite. QED.

we can apply the above theorem to define a sphere around a

poinlt x where I(K) is positive definite such that all points

within this sphere will have observability Grammian being

positive definite.

Theorem 3.2

If '(y) is positive definite at yo then one can

construct a sphere S - :Hx~ < r} such that for all y

in S, '(y) is positive definite and the radius of S can be

* choosen as

r =min {ri, r~l

where Iy-oll < rl, JI'(y) 1 (40)I1 < L Ily-y4H' and r2=)L/L.

Proof Given

JI (x) - (z21 < L Ily-xy, < L r,

* Consider two cases:

*(a) Assuming r 1 < r 2 1 or L-rj < X1, thenL



"'i ~ ~Iy) -Io < X1'" --

this gives 1(y) > 0.

(b) Assuming r2<rl, or X1<L.rl, then choose a new y, y'

such that

I -
Then III(y')-I( 0)jII < L. I'-011 "l p.
this gives Ily') > 0. QED.

The above theorem presents the fact that when I(xk) is

positive definite, then the reconstruction of xk at a local

region can be made and the size of this region (the sphere S) can

be estimated. We next illustrate a particular realization of the

Maximum Likelihood estimator where the existence of this

algorithm also depends on the invertibility of I(xk).

An iterative algorithm in implementing the Maximum

Likelihood estimator for estimating the state vector with angle

only measurements was presented in [5). Let xk denote the
nth iteration on estimating xk, then the following algorithm,

derived in [51, gives the n+Ist iterative solution,

+n+ n (x) [Ii G  R (Y -) (3.2)
Ai = k + Ei_ ' t x 1 "1.1i,

i'121'
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where the covariance matrix P(x) takes the same functional

form as the Cramer-Rao Bound defined in (3.1). Clearly, the

existence of P(!Jkn) is dependent upon the invertibility of

I(x!kn). It was shown in [51 that the above algorithm

provides estimates which asymptotically approach the Cramer-Rao

Bound. This was not surprising due to the theoretically

justified property of the Maximum Likelihood estimator. -:

The derivation of (3.2) was based upon minimizing a

quadratic error criterion, i.e.,

Sh(xi)) TRi hxi) 13.3
min i-1 -- --i)

In the case of designing a nonlinear observer, the Eq. (3.2) can

be used simply be setting Ri to an identity matrix. The

convergence of (3.2) is guaranteed if the J above is convex in a

local region about xk and the initial guess xko is

contained in this region.

3.3 Sumary

In this section, we have presented the fundamental

equations on the Cramer-Rao bound for systems defined with (2.1)

and (2.2). We have also tied the relationship between the

invertibility of the Fisher's information matrix to the local

104: :
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observability of nonlinear systems and the existence of a

particular Maximum Likelihood algorithm, we summarize our

findings below.

(1) The computation of the Cramer-Rao bound is possible

only if the Fisher's information matrix is positive definite.

(2) When this is the case, the nonlinear system is locally

observable.

(3) A maximum likelihood estimation algorithm, which also

requires the Fisher's information matrix to be nonsingular, can

be constructed. In the noise free measurement case, this

algorithm becomes an observer and the convergence is guaranteed

if the quadratic error criterion is convex about !k and the
0initial guess xk is contained in this region.

-. - ?.
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4. ERROR COVARIANCE EQUATIONS

With the use of the Cramer-Rao Bound for estimation

performance evaluation justified, we now present computational

algorithms for filtering and prediction errors.

4.1 Filtering Errors

The computation of (3.1) involves matrix inversion. When

sufficient number of measurements have been collected so that the

information matrix I(xk) becomes nonsingular, then Eq. (3.1)

can be replaced by the familiar matrix Riccati equation.

Examining (3.1), one can write

k+1 i~
k1T T -1

Ik+ I) = Gi H i R
I H i Gi

HT R- (4.1)

k+1 k+1 k+1 + kT  I k I  (4.1

Let

Pk+1 = k P~x- (4.2)

One can obtain the following result with direct application of

the Matrix Inversion Lemma to Eq. (4.1).

k+1 k+1 H+ 1 k(HT+1 k+1 Hk+l+ +l) 1 k+1k+1

The computation of Pk+1, Eq. (4.2), can also be replaced by

solving for Pk+1 using the following matrix differential

equation,

12..



P= F P + P F T t £[t, tk I (4.4)

with initial condition P(xk) at t - tk.

Equations (4.3) and (4.4) give the filtering error. They

are applied as soon as I(xk) becomes nonsingular.

4.2 Prediction Errors

The prediction error equation is (4.4) (or (4.2)), by

solving it at the time desired with the initial condition set at

the last point of measurements.

In the problem of trajectory estimation with the ballistic

coefficient as the unknown parameter, two situations may occur

for the problem of trajectory prediction. This is due to the

fact that the variations of ballistic coefficients (i.e.,

deviations from a nominal time profile) are usually known to

within a priori bounds. When the ballistic coefficient

estimation (filtering) error is below those errors characterized

by a priori bounds, the trajectory prediction error is obtained

* by solving Eq. (4.4) (or (4.2)). On the other hand when such is

not the case, the trajectory prediction error should only be

limited to errors induced by the a priori bounds. In this

latter case, the error equation can be derived using the

following linear equation approximation. Let the linear system

13
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be modeled as

= Fx + G y 4.5)

Notice that the unknown parameter is treated as a driving force

. term. The solution of (4.5) can be obtained via the transition

matrix *(t, T) as

t
x= (t, tol O + f *(t, T) G I(T) dT (4.6)

0 

.

where _o is the initial condition. Let _ t denoted a

perturbed solution due to perturbation 6_1 in the parameter vector

.y, one obtains

t
- !t, t 0 -co + 0 *(t, T) G(8+61) dr (4.7)

to

Let . denote the outer product of the trajectory perturbation

8 xt , it can be shown that

t
8x= f (t, T) G 1 dT (4.8)

t
0

and

6xtax (49)

The above analysis suggests the following two separate

* procedures for trajectory prediction when a priori bounds on the

unknown parameter are available.

14
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(1) When the parameter estimation error is smaller than

the a priori bound, use the covariance differential equation

(Eq. (4.2) or (4.4)) to solve for trajectory prediction error.

(2) When the parameter estimation error is large,

calculate estimation error assuming perfect knowledge on the

parameter value, then obtain trajectory prediction error using

trajectory perturbation Eqs. (4.8) - (4.9).

15
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5. SUMMARY

In this report, we have presented equations for calculating

filtering and prediction errors for systems with uncertain

parameters. The results are based upon the Cramer-Rao bound on

covariance in state estimation. This analysis is motivated by

the problem of trajectory estimation with uncertain parameters.

The major findings of this report are summarized below.

(1) Unknown constant parameters are modeled as constant

state variables.

(2) Unknown time-varying parameters with known time

profiles require the modeling of proportional constants as

constant state "ariables.

(3) The use of the Cramer-Rao Bound as an analysis tool is

discussed and its relationship with the nonlinear observability

condition and the existence of a maximum likelihood algorithm is

explored.

(4) Filtering errors are obtained by solving the

Cramer-Rao bound equation.

(5) Prediction errors due to filtering error alone or with

the knowledge of parameter a priori bounds are also obtained.

Application of the analysis discussed herein to the

trajectory estimation problem will be published in a future

report.

16

-. o C. .. . .. . . . . .. . ... . ... .- .



-. .. - - -. ._ .-. -. r f r., . . . : : -o . _ -, _ _ . _.. .-. . . -. , , . _ v : o _ . .

REFERENCES

1. C. B. Chang, "Two Lower Bounds on the Covariance for
Nonlinear Estimation Problems," IEEE Trans. Automat. Contr.
AC-26, 1294 (1981).

2. J. H. Taylor, "The Cramer-Rao Estimation Error Lower Bound
Computation for Deterministic Nonlinear Systems," IEEE
Trans. Automat. Contr. AC-24, 343 (1979).

3. H. Cramer, Mathematical Methods of Statistics (Princeton
University Press, Princeton, New Jersey, 1946).

4. T. S. Lee, K. P. Dunn, and C. B. Chang, "On Observability
and Unbiased Estimation of Nonlinear Systems," Proceedings
of 10th IFIP Conference on Systems Modeling and
Optimization (Springer-Verlag, New York, 1982).

5. C. B. Chang, "Ballistic Trjectory Estimation with Angle
Only Measurements," IEEE Trans. Automat. Contr. AC-25, 474
(1980).

18

• .

* - . . .. .



ACK!NWLEDGMENTS

The authors would like to thank Drs. R. B. Holmes and

T. S. Lee bor technical discussions during this work and

D. HcTague for her prompt typing of this manuscript.

17



UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (VS.hoa. m 4

REPOT DCUMITATOU AGEREAD INSTICFIONS
_________ REPORT___________________________PAGE_ BEFORE COMPLETING FORM

1. RPMINJURIS 2 m R GOOACElI., Ea IS CATALOG OUE

4. TITLE (asul Subtitle) S. TMP SF IMOT & PEIM COVERED

Technical Report
Filtering and Prediction Performance for a Class of Systems __________________

with Uncertain Parameters S. PIROUIS OIA. REPOIT NUMER
Technical Report 694

7. AUTNNs S. CONTRACT N RAN 111UMSR(s)

Chaw Bing Chang and Keh-Ping Dunn F19628-80-C4)002

S. PFOIII ORGANIZAION UAME AND ADDRESS ISt PROGRAM ELEMENT. PIOJCT. TANE
Lincoln Laboratory. M.I.T. AREA A WORK UNIT NUMERS

P.O. Box 73 PormEeetN.634
Lexington, MA 02173.0073 PormEeetN.634

11. COITROLLING OFFICE NMNE ADS ADDES$ 12. EIMT DATE
Ballistic Missile Defense Program Office 27 July 1984
Department of the Army ___________________

P.O. Box 15280 13. SUMMER OF PAGES
Arlington, VA 22215 26

14. MONITOING AGENCY NME A ADIESS (ifdiffeen from Contooling Office) IS. SECUETV CLASS. (of"i repo

ILElectronic Systems Division Ucasfe
Hanscom AFB, MA 01731 ISa. KOCASSIFICATION DOWNGRADING M~EOW

IL. DISTSUTION STATEMENT (of" ~Repori)

Approved for public release; distribution unlimited.

17. UOSTUSSITIOG STATEMENT (of the .brct etred un lack SI, if dJfferent from Report

1. SUPPtEMEIFARY VOS

None

19. KEY WINDS (Continue on reverse side if necessary and identify by block number)

filtering performance parameter estimation
prediction performance maximum likelihood technique
Cramer-Rao bound nonlinear observability
nonlinear systems

IS. ANSTIACT (Continue on reverse sidle it necessary Mnd dentifr by block number)

A covariance analysis technique using the Cramer-Rao lower bound for assessing filtering and predic.
% tion performance for a class of nonlinear systems is presented. The class of systems considered is nonlin-

ear, deterministic, with unknown parameters. The validity of this technique for the problems consid.
ered is justified using local observability theory and unbiased estimation for nonlinear systems.

00 1473 EIIITIO OF I NOVE NS 13OU UNCLASSIFIED
I Jas 72 SECURITY CLASIFIATI CF THIS PAGE (Wawa, Doma Een.4



IV

4.4

~ ~14

* ~~~ w :~~"J L r f* ~

re *4

44~~~ I!I14 
'

~~14

*'~~~ ~ Ow' r ~* *',

0v I-'.-.-C1.---.0*

VS


